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Preface

In his Forward to Preface of the sixth edition of this work, Frank Incropera shared with read-
ers the timeline for the multi-edition transition of authorship from Incropera and DeWitt to 
Bergman and Lavine. Throughout the 15 years of our involvement with the text, we have been 
inspired by, and mindful of, Frank’s insistence that the quality of the expository material be of 
paramount importance. We have also attempted to demonstrate the relevance of heat transfer by 
providing a multitude of examples, ranging from traditional and non-traditional energy genera-
tion to potential climate change, where heat transfer plays a vital role.

Since our initial participation in the sixth edition, unexpected developments have 
evolved in engineering education. For example, the escalating cost of higher education is 
now debated at all levels of political leadership. As classroom instructors and parents of 
college students, this concern is not lost on us. In response, we have taken steps to hold 
the cost of the text in check by reducing its page count and forgoing production of a new 
edition of the companion text, Introduction to Heat Transfer. On the pedagogical front, we 
have reduced the complexity of many example and end-of-chapter problems. In addition to 
introducing new end-of-chapter problems, we have modified a significant number of exist-
ing problems, often necessitating modified solution approaches.

As in the previous two editions, we have retained a rigorous and systematic problem-
solving methodology, and provide a broad range of fundamental as well as applications-
motivated end-of-chapter problems that require students to hone and exercise the concepts 
of heat and mass transfer. We continue to strive to provide a text that will serve as a valu-
able resource for students and practicing engineers throughout their careers.

Approach and Organization

As in previous editions, we continue to adhere to four broad learning objectives:

1.  The student should internalize the meaning of the terminology and physical principles 
associated with the subject.

2.  The student should be able to delineate pertinent transport phenomena for any process 
or system involving heat or mass transfer.



3.  The student should be able to use requisite inputs for computing heat or mass transfer 
rates and/or material temperatures or concentrations.

4.  The student should be able to develop representative models of real processes and sys-
tems and draw conclusions concerning process/system design or performance from the 
attendant analysis.

Also as in previous editions, key concepts are reviewed and questions to test student under-
standing of the concepts are posed at the end of each chapter.

It is recommended that problems involving complex models and/or parameter sensitiv-
ity considerations be addressed using the Interactive Heat Transfer (IHT ) software package 
that has been developed and refined in conjunction with the text. With its intuitive user 
interface, extensive built-in thermophysical property database, embedded convection cor-
relations taken from the text, and other useful features, students can master the basic usage 
of IHT in about one hour. To facilitate use of IHT, selected example problems in the exposi-
tory material are identified with an “IHT” icon as shown to the left. These problems are 
included as demonstrations in the IHT software, allowing students to observe how these 
problems can be solved easily and quickly. More information regarding IHT is available 
later in this preface. Due to the preponderance of readily available software packages 
capable of solving multi-dimensional conduction problems, the finite-element software 
package previously made available to students has been discontinued.

Some homework problems require a computer-based solution. Other problems include 
both a hand calculation and an extension that is computer based. The latter approach is 
time-tested and promotes the habit of checking computer-generated solutions with hand 
calculations. Once validated, the computer solution can be utilized to conduct parametric 
calculations. Problems involving both hand- and computer-generated solutions are identi-
fied by enclosing the exploratory part in a red rectangle, as, for example, (b) , (c) , or (d) .  
This feature also allows instructors to focus their assignments on problems amenable to 
solution using hand calculations, and benefit from the richness of these problems without 
assigning the computer-based parts. Problems with a boxed number (for example, 1.25 ) 
require an entirely computer-based solution.

What’s New to the 8th Edition

Although the size of the text has been reduced, we have added approximately 90 new and 
225 revised end-of-chapter problems, with an emphasis on problems amenable to analytical 
solutions. Many of the revised problems require modified solution approaches. Within the 
text, the treatment of thermodynamics has been improved, with clarification of the various 
forms of energy and their relation to heat transfer. New material on micro- and nanoscale 
heat transfer and thermal boundary resistances has been added. Mixed convection is pre-
sented in a more rigorous manner.

Classroom Coverage

The content of the text has evolved over many years in response to the development of new, 
fundamental concepts of heat (and mass) transfer and novel ways that the principles of heat 
transfer are applied. A broad range of engineering disciplines and institutions, with varying 
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missions, make use of this text. Moreover, it is used not only in introductory courses, but 
also in advanced courses at many colleges and universities. Mindful of this diversity, the 
authors’ intent is not to assemble a text whose content is to be covered, in entirety, during a 
single semester- or quarter-long course. Rather, the text includes fundamental material that 
should be covered in any introductory heat transfer course, and optional material that can 
be covered, depending on the mission of the institution, the time available, or the interests 
of the instructor or practitioner.

Heat and Mass Transfer To assist instructors in preparing a syllabus for a first course in 
heat and mass transfer, we suggest the following (with suggestions for a first course in heat 
transfer further below).

Chapter 1 Introduction sets the stage for any discussion of heat transfer. It explains the 
science-based linkage between thermodynamics and heat transfer, and the relevance of heat 
transfer. It should be covered in its entirety. Much of the content of Chapter 2 Introduction 
to Conduction is critical in a first course, especially Section 2.1 The Conduction Rate Equa-
tion, Section 2.3 The Heat Diffusion Equation, and Section 2.4 Boundary and Initial Condi-
tions. Section 2.2 The Thermal Properties of Matter need not be covered in depth in a first 
course.

Chapter 3 One-Dimensional, Steady-State Conduction includes some material that 
can be assigned depending on the instructor’s interest. The optional material includes Sec-
tion 3.1.5 Porous Media, and Section 3.7 Other Applications of One-Dimensional Steady-
State Conduction. The content of Chapter 4 Two-Dimensional, Steady-State Conduction 
is important in that both fundamental concepts and approximate techniques are presented. 
We recommend that all of Chapter 4 be covered, although some instructors may elect  
to not include Section 4.4 Finite-Difference Equations and Section 4.5 Solving the Finite-
Difference Equations if time is short. It is recommended that Chapter 5 Transient Con-
duction be covered in entirety, although some instructors may prefer to cover only some 
aspects of Sections 5.8 through 5.10.

The content of Chapter 6 Introduction to Convection is often difficult for students to 
absorb. However, Chapter 6 introduces fundamental concepts in a rigorous manner and sets 
the stage for Chapters 7 through 11. Chapter 6 should be covered in entirety in an introduc-
tory heat and mass transfer course.

Chapter 7 External Flow builds on Chapter 6, introduces several important concepts, 
and presents convection correlations that students will utilize throughout the remainder of 
the text and in subsequent professional practice. We recommend Sections 7.1 through 7.5 
be included in any first course in heat and mass transfer. However, Sections 7.6 through 7.8 
are optional. Likewise, Chapter 8, Internal Flow includes matter used in the remainder of 
the text and in professional practice. However, Sections 8.6 through 8.8 may be viewed as 
optional in a first course.

Buoyancy-induced flow is covered in Chapter 9 Free Convection. Most of Chapter 9 
should be covered in a first course, although optional material includes Section 9.7 Free 
Convection Within Parallel Plate Channels. The content of Chapter 10 Boiling and Conden-
sation that can be optional in a first course includes Section 10.5 Forced Convection Boiling,  
Section 10.9 Film Condensation on Radial Systems, and Section 10.10 Condensation in 
Horizontal Tubes. However, if time is short, Chapter 10 can be skipped without affecting 
students’ ability to understand the remainder of the text. We recommend that Chapter 11 
Heat Exchangers be covered in entirety, although Section 11.6 Additional Considerations 
may be de-emphasized in a first course.
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A distinguishing feature of the text, from its inception, is the in-depth coverage of radi-
ation heat transfer in Chapter 12 Radiation: Processes and Properties. The content of the 
chapter is perhaps more relevant today than ever. However, Section 12.9 can be covered 
in an advanced course. Chapter 13 Radiation Exchange Between Surfaces may be covered as 
time permits, or in an intermediate heat transfer course.

The material in Chapter 14 Diffusion Mass Transfer is relevant to many contemporary 
applications ranging from chemical processing to biotechnology, and should be covered in 
entirety in an introductory heat and mass transfer course. However, if problems involving 
stationary media are solely of interest, Section 14.2 may be omitted or covered in a follow-
on course.

Heat Transfer Usage of this text for a first course in heat transfer might be structured as 
follows.

The suggested coverage of Chapters 1 through 5 is identical to that for a course in heat 
and mass transfer described above. Before beginning Chapter 6 Introduction to Convection, 
it is recommended that the definition of mass transfer, provided in the introductory remarks 
of Chapter 14 Diffusion Mass Transfer, be reviewed with students. With the definition of 
mass transfer firmly in hand, remaining content that focuses on, for example, Fick’s law, 
Sherwood and Schmidt numbers, and evaporative cooling will be apparent and need not be 
covered. For example, within Chapter 6, Section 6.1.3 The Concentration Boundary Layer, 
Section 6.2.2 Mass Transfer, Section 6.7.1 The Heat and Mass Transfer Analogy, and  
Section 6.7.2. Evaporative Cooling may be skipped in entirety.

Chapter 7 External Flow coverage is the same as recommended for the first course 
in heat and mass transfer, above. Components of Chapter 7 that can be skipped, such as 
Example 7.3, will be evident. Section 8.9 Convection Mass Transfer may be skipped in 
Chapter 8 Internal Flow while Section 9.10 Convection Mass Transfer in Chapter 9 Free 
Convection need not be covered.

The recommended coverage in Chapters 10 through 13 is the same as for a first course 
in heat and mass transfer, above. Except for its introductory remarks, Chapter 14 Diffusion 
Mass Transfer is not included in a heat transfer course.

End-of-chapter problems involving mass transfer and/or evaporative cooling that 
should not be assigned in a heat transfer course are clustered toward the end of problem 
sets, and are identified with appropriate headings.
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Supplemental and Web Site Material

The companion web site for the text is www.wiley.com/college/bergman. By clicking on 
appropriate links, students may access Answers to Selected Homework Problems and the 
Supplemental Material Handouts of the text. Supplemental Sections are identified 
throughout the text with the icon shown in the margin to the left.

Material available for instructors only includes that which is available to students and a 
Homework Correlation Guide, the Solutions Manual, the Lecture PowerPoint Slides, 
and an Image Gallery that includes electronic versions of figures from the text for those 
wishing to prepare their own materials for classroom presentation. The Instructor Solutions  
Manual is copyrighted material for use only by instructors who require the text for their course.1

Interactive Heat Transfer 4.0 is available at the companion web site at no cost for 
both students and instructors. As described by the authors in the Approach and Organiza-
tion section, this simple-to-use software tool provides modeling and computational features 
useful in solving many problems in the text, and it enables rapid what-if and exploratory 
analysis of many types of problems.
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2 Chapter 1 ■ Introduction

From the study of thermodynamics, you have learned that energy can be transferred by 
interactions of a system with its surroundings. These interactions are called work and heat. 
However, thermodynamics deals with the end states of the process during which an inter-
action occurs and provides no information concerning the nature of the interaction or the 
time rate at which it occurs. The objective of this text is to extend thermodynamic analysis 
through the study of the modes of heat transfer and through the development of relations to 
calculate heat transfer rates.
 In this chapter we lay the foundation for much of the material treated in the text. We 
do so by raising several questions: What is heat transfer? How is heat transferred? Why is 
it important? One objective is to develop an appreciation for the fundamental concepts and 
principles that underlie heat transfer processes. A second objective is to illustrate the man-
ner in which a knowledge of heat transfer may be used with the first law of thermodynamics 
(conservation of energy) to solve problems relevant to technology and society.

1.1  What and How?

A simple, yet general, definition provides sufficient response to the question: What is heat 
transfer?

Heat transfer (or heat) is thermal energy in transit due to a spatial temperature difference.

Whenever a temperature difference exists in a medium or between media, heat transfer 
must occur.
 As shown in Figure 1.1, we refer to different types of heat transfer processes as modes. 
When a temperature gradient exists in a stationary medium, which may be a solid or a fluid, 
we use the term conduction to refer to the heat transfer that will occur across the medium. 
In contrast, the term convection refers to heat transfer that will occur between a surface 
and a moving fluid when they are at different temperatures. The third mode of heat transfer 
is termed thermal radiation. All surfaces of finite temperature emit energy in the form of 
electromagnetic waves. Hence, in the absence of an intervening medium, there is net heat 
transfer by radiation between two surfaces at different temperatures.

Figure 1.1 Conduction, convection, and radiation heat transfer modes.
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>
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1.2  Physical Origins and Rate Equations

As engineers, it is important that we understand the physical mechanisms which underlie the 
heat transfer modes and that we be able to use the rate equations that quantify the amount 
of energy being transferred per unit time.

1.2.1  Conduction

At mention of the word conduction, we should immediately conjure up concepts of atomic 
and molecular activity because processes at these levels sustain this mode of heat transfer. 
Conduction may be viewed as the transfer of energy from the more energetic to the less 
energetic particles of a substance due to interactions between the particles.
 The physical mechanism of conduction is most easily explained by considering a gas 
and using ideas familiar from your thermodynamics background. Consider a gas in which a 
temperature gradient exists, and assume that there is no bulk, or macroscopic, motion. The 
gas may occupy the space between two surfaces that are maintained at different tempera-
tures, as shown in Figure 1.2. We associate the temperature at any point with the energy of 
gas molecules in proximity to the point. This energy is related to the random translational 
motion, as well as to the internal rotational and vibrational motions, of the molecules.
 Higher temperatures are associated with higher molecular energies. When neighboring 
molecules collide, as they are constantly doing, a transfer of energy from the more energetic 
to the less energetic molecules must occur. In the presence of a temperature gradient, energy 
transfer by conduction must then occur in the direction of decreasing temperature. This 
would be true even in the absence of collisions, as is evident from Figure 1.2. The hypotheti-
cal plane at xo is constantly being crossed by molecules from above and below due to their 
random motion. However, molecules from above are associated with a higher temperature 
than those from below, in which case there must be a net transfer of energy in the positive 
x-direction. Collisions between molecules enhance this energy transfer. We may speak of 
the net transfer of energy by random molecular motion as a diffusion of energy.
 The situation is much the same in liquids, although the molecules are more closely 
spaced and the molecular interactions are stronger and more frequent. Similarly, in a solid, 
conduction may be attributed to atomic activity in the form of lattice vibrations. The modern 

xo

x

T

T2

T1 > T2

q"x q"x

Figure 1.2 Association of conduction heat transfer with diffusion of energy due to molecular 
activity.



4 Chapter 1 ■ Introduction

view is to ascribe the energy transfer to lattice waves induced by atomic motion. In an electri-
cal nonconductor, the energy transfer is exclusively via these lattice waves; in a conductor, it 
is also due to the translational motion of the free electrons. We treat the important properties 
associated with conduction phenomena in Chapter 2 and in Appendix A.
 Examples of conduction heat transfer are legion. The exposed end of a metal spoon 
suddenly immersed in a cup of hot coffee is eventually warmed due to the conduction of 
energy through the spoon. On a winter day, there is significant energy loss from a heated 
room to the outside air. This loss is principally due to conduction heat transfer through the 
wall that separates the room air from the outside air.
 Heat transfer processes can be quantified in terms of appropriate rate equations. These 
equations may be used to compute the amount of energy being transferred per unit time. For heat 
conduction, the rate equation is known as Fourier’s law. For the one-dimensional plane wall 
shown in Figure 1.3, having a temperature distribution T(x), the rate equation is expressed as

 ′′ = −q k
dT

dx
x  (1.1)

 The heat flux ′′q (W/m )x
2  is the heat transfer rate in the x-direction per unit area perpen-

dicular to the direction of transfer, and it is proportional to the temperature gradient, dT/dx, 
in this direction. The parameter k is a transport property known as the thermal conductivity 
(W/m ⋅⋅ K) and is a characteristic of the wall material. The minus sign is a consequence of 
the fact that heat is transferred in the direction of decreasing temperature. Under the steady-
state conditions shown in Figure 1.3, where the temperature distribution is linear, the tem-
perature gradient may be expressed as

= −dT

dx

T T

L
2 1

and the heat flux is then

′′ = −
−

q k
T T

L
x

2 1

or

 ′′ = − = D
q k

T T

L
k

T

L
x

1 2  (1.2)

Note that this equation provides a heat flux, that is, the rate of heat transfer per unit area. 
The heat rate by conduction, qx(W), through a plane wall of area A is then the product of 
the flux and the area, ⋅⋅= ′′q q Ax x .

q"x

L

T1

T(x)

T

x

T2

Figure 1.3 One-dimensional heat transfer by conduction 
(diffusion of energy).
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example 1.1

The wall of an industrial furnace is constructed from 0.15-m-thick fireclay brick having 
a thermal conductivity of 1.7 W/m ⋅⋅ K. Measurements made during steady-state operation 
reveal temperatures of 1400 and 1150 K at the inner and outer surfaces, respectively. What 
is the rate of heat loss through a wall that is 0.5 m × 1.2 m on a side?

Solution

Known: Steady-state conditions with prescribed wall thickness, area, thermal conductiv-
ity, and surface temperatures.

Find: Rate of heat loss through wall.

Schematic:

*

Assumptions:
1. Steady-state conditions.

2. One-dimensional conduction through the wall.

3. Constant thermal conductivity.

Analysis: Since heat transfer through the wall is by conduction, the heat flux may be 
determined from Fourier’s law. Using Equation 1.2, we have

q k
T

L
1.7 W/m K

250 K

0.15 m
2833 W/mx

2⋅⋅′′ =
D

= × =

The heat flux represents the rate of heat transfer through a section of unit area, and it is uni-
form (invariant) across the surface of the wall. The rate of heat loss through the wall of area 

= ×A H W  is then

 q HW q( ) (0.5 m 1.2 m)2833 W/m 1700 Wx x
2= ′′ = × =  ◁

Comments: Note the direction of heat flow and the distinction between heat flux and 
heat rate.

*This icon identifies examples that are available in tutorial form in the Interactive Heat Transfer (IHT) software 
that accompanies the text. Each tutorial is brief and illustrates a basic function of the software. IHT can be used 
to solve simultaneous equations, perform parameter sensitivity studies, and graph the results. Use of IHT will 
reduce the time spent solving more complex end-of-chapter problems.

T1 = 1400 K T2 = 1150 K

k = 1.7 W/m•K

x
L = 0.15 m

qx''

x
L

W = 1.2 m

H = 0.5 m

Wall area, A

qx
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1.2.2  Convection

The convection heat transfer mode is comprised of two mechanisms. In addition to energy 
transfer due to random molecular motion (diffusion), energy is also transferred by the bulk, 
or macroscopic, motion of the fluid. This fluid motion is associated with the fact that, at 
any instant, large numbers of molecules are moving collectively or as aggregates. Such 
motion, in the presence of a temperature gradient, contributes to heat transfer. Because the 
molecules in the aggregate retain their random motion, the total heat transfer is then due to 
a superposition of energy transport by the random motion of the molecules and by the bulk 
motion of the fluid. The term convection is customarily used when referring to this cumula-
tive transport, and the term advection refers to transport due to bulk fluid motion alone.
 We are especially interested in convection heat transfer between a fluid in motion and 
a bounding surface when the two are at different temperatures. Consider fluid flow over the 
hot surface of Figure 1.4. A consequence of the fluid–surface interaction is the develop-
ment of a region in the fluid through which the velocity varies from zero at the surface to a 
finite value u∞ associated with the flow. This region of the fluid is known as the hydrody-
namic, or velocity, boundary layer. Moreover, if the surface and flow temperatures differ, 
there will be a region of the fluid through which the temperature varies from Ts at =y 0 to 

∞T  in the outer flow. This region, called the thermal boundary layer, may be smaller, larger, 
or the same size as that through which the velocity varies. In any case, if > ∞T T ,s , convec-
tion heat transfer will occur from the surface to the outer flow.
 The convection heat transfer mode is sustained both by random molecular motion and 
by the bulk motion of the fluid within the boundary layer. The contribution due to random 
molecular motion (diffusion) dominates near the surface where the fluid velocity is low. In 
fact, at the interface between the surface and the fluid =y( 0), the fluid velocity is zero, and 
heat is transferred by this mechanism only. The contribution due to bulk fluid motion origi-
nates from the fact that the boundary layer grows as the flow progresses in the x-direction. 
In effect, the heat that is conducted into this layer is swept downstream and is eventually 
transferred to the fluid outside the boundary layer. Appreciation of boundary layer phenom-
ena is essential to understanding convection heat transfer. For this reason, the discipline of 
fluid mechanics will play a vital role in our later analysis of convection.
 Convection heat transfer may be classified according to the nature of the flow. We 
speak of forced convection when the flow is caused by external means, such as by a fan, a 
pump, or atmospheric winds. As an example, consider the use of a fan to provide forced 
convection air cooling of hot electrical components on a stack of printed circuit boards 
(Figure 1.5a). In contrast, for free (or natural) convection, the flow is induced by buoy-
ancy forces, which are due to density differences caused by temperature variations in the 
fluid. An example is the free convection heat transfer that occurs from hot components on 

y

u(y) T(y)

x
Ts

Hot
surface

u∞
y

T∞

Temperature
distribution
T(y)

Velocity
distribution
u(y) q"

Fluid

Figure 1.4 Boundary layer development in 
convection heat transfer.
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a vertical array of circuit boards in air (Figure 1.5b). Air that makes contact with the com-
ponents experiences an increase in temperature and hence a reduction in density. Since 
it is now lighter than the surrounding air, buoyancy forces induce a vertical motion for 
which warm air ascending from the boards is replaced by an inflow of cooler ambient air.
 While we have presumed pure forced convection in Figure 1.5a and pure natural con-
vection in Figure 1.5b, conditions corresponding to mixed (combined) forced and natural 
convection may exist. For example, if velocities associated with the flow of Figure 1.5a are 
small and/or buoyancy forces are large, a secondary flow that is comparable to the imposed 
forced flow could be induced. In this case, the buoyancy-induced flow would be normal 
to the forced flow and could have a significant effect on convection heat transfer from the 
components. In Figure 1.5b, mixed convection would result if a fan were used to force 
air upward between the circuit boards, thereby assisting the buoyancy flow, or downward, 
thereby opposing the buoyancy flow.
 We have described the convection heat transfer mode as energy transfer occurring 
within a fluid due to the combined effects of conduction and bulk fluid motion. Typically, 
the energy that is being transferred is the sensible, or internal thermal, energy of the fluid. 
However, for some convection processes, there is, in addition, latent heat exchange. This 
latent heat exchange is generally associated with a phase change between the liquid and 
vapor states of the fluid. Two special cases of interest in this text are boiling and condensa-
tion. For example, convection heat transfer results from fluid motion induced by vapor bub-
bles generated at the bottom of a pan of boiling water (Figure 1.5c) or by the condensation 
of water vapor on the outer surface of a cold water pipe (Figure 1.5d).

Hot components
on printed

circuit boards

Air

Air

Forced
flow

Buoyancy-driven
flow

q''

q''

q"
Water

Hot plate

Cold
water

Water
droplets

Moist air

Vapor
bubbles

(a) (b)

(c) (d)

q''

Figure 1.5 Convection heat transfer processes. (a) Forced convection. (b) Natural  
convection. (c) Boiling. (d) Condensation.
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 Regardless of the nature of the convection heat transfer process, the appropriate rate 
equation is of the form

 q h T T( )s′′ = − ∞  (1.3a)

where ′′q , the convective heat flux (W/m2), is proportional to the difference between 
the surface and fluid temperatures, Ts and T∞, respectively. This expression is known as  
Newton’s law of cooling, and the parameter h (W/m2 ⋅⋅ K) is termed the convection heat 
transfer coefficient. This coefficient depends on conditions in the boundary layer, which are 
influenced by surface geometry, the nature of the fluid motion, and an assortment of fluid 
thermodynamic and transport properties.
 Any study of convection ultimately reduces to a study of the means by which h may 
be determined. Although consideration of these means is deferred to Chapter 6, convection 
heat transfer will frequently appear as a boundary condition in the solution of conduction 
problems (Chapters 2 through 5). In the solution of such problems we presume h to be 
known, using typical values given in Table 1.1.
 When Equation 1.3a is used, the convection heat flux is presumed to be positive if heat 
is transferred from the surface T T( )s > ∞  and negative if heat is transferred to the surface 
T T( )s>∞ . However, nothing precludes us from expressing Newton’s law of cooling as

 q h T( )Ts′′ = −∞  (1.3b)

in which case heat transfer is positive if it is to the surface.

1.2.3  Radiation

Thermal radiation is energy emitted by matter that is at a nonzero temperature. Although 
we will focus on radiation from solid surfaces, emission may also occur from liquids and 
gases. Regardless of the form of matter, the emission may be attributed to changes in the 
electron configurations of the constituent atoms or molecules. The energy of the radiation 
field is transported by electromagnetic waves (or alternatively, photons). While the transfer 
of energy by conduction or convection requires the presence of a material medium, radia-
tion does not. In fact, radiation transfer occurs most efficiently in a vacuum.

table 1.1  Typical values of the  
convection heat transfer coefficient

 h 
Process (W/m2 ⋅⋅ K)

Free convection
   Gases 2–25
   Liquids 50–1000
Forced convection
   Gases 25–250
   Liquids 100–20,000
Convection with phase change
   Boiling or condensation 2500–100,000
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 Consider radiation transfer processes for the surface of Figure 1.6a. Radiation that is 
emitted by the surface originates from the thermal energy of matter bounded by the surface, 
and the rate at which energy is released per unit area (W/m2) is termed the surface emissive 
power, E. There is an upper limit to the emissive power, which is prescribed by the Stefan–
Boltzmann law

 σ=E Tb s
4  (1.4)

where Ts is the absolute temperature (K) of the surface and σ  is the Stefan–Boltzmann con-
stant ( 5.67 10 W/m K )8 2 4⋅⋅σ = × − . Such a surface is called an ideal radiator or blackbody.
 The heat flux emitted by a real surface is less than that of a blackbody at the same tem-
perature and is given by

 εσ=E Ts
4  (1.5)

where ε  is a radiative property of the surface termed the emissivity. With values in the 
range ε≤ ≤0 1, this property provides a measure of how efficiently a surface emits energy 
relative to a blackbody. It depends strongly on the surface material and finish, and repre-
sentative values are provided in Appendix A.
 Radiation may also be incident on a surface from its surroundings. The radiation may 
originate from a special source, such as the sun, or from other surfaces to which the surface 
of interest is exposed. Irrespective of the source(s), we designate the rate at which all such 
radiation is incident on a unit area of the surface as the irradiation G (Figure 1.6a).
 A portion, or all, of the irradiation may be absorbed by the surface, thereby increasing 
the thermal energy of the material. The rate at which radiant energy is absorbed per unit 
surface area may be evaluated from knowledge of a surface radiative property termed the 
absorptivity α . That is,

 α=G Gabs  (1.6)

where α≤ ≤0 1. If α < 1 and the surface is opaque, portions of the irradiation are 
reflected. If the surface is semitransparent, portions of the irradiation may also be transmit-
ted. However, whereas absorbed and emitted radiation increase and reduce, respectively, 
the thermal energy of matter, reflected and transmitted radiation have no effect on this 
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Figure 1.6 Radiation exchange: (a) at a surface and (b) between a surface and large 
surroundings.


